NORSOK STANDARD

SURFACE PREPARATION AND PROTECTIVE COATING

M-501
Rev. 4, December 1999
FOREWORD

NORSOK (The competitive standing of the Norwegian offshore sector) is the industry initiative to add value, reduce cost and lead-time and remove unnecessary activities in offshore field developments and operations.

The NORSOK standards are developed by the Norwegian petroleum industry as a part of the NORSOK initiative and are jointly issued by OLF (The Norwegian Oil Industry Association) and TBL (Federation of Norwegian Engineering Industries). NORSOK standards are administered by NTS (Norwegian Technology Standards Institution).

The purpose of this industry standard is to replace the individual oil company specifications for use in future petroleum industry developments and operations, subject to the individual company's review and application.

The NORSOK standards make extensive references to international standards. Where relevant, the contents of this standard will be used to provide input to the international standardisation process. Subject to implementation into international standards, this NORSOK standard will be withdrawn.

Annex A specifies coating systems. For those coating systems which are subject to pre-qualification, i.e. coating systems 1, 3B, 4, 5 and 7, the specified coating system is informative. The remaining coating systems are normative.

Annex B is informative.

INTRODUCTION

The main changes included in this revised issue of NORSOK M-501 are:

- The coating system for ballast water has been moved from coating system no. 7 to coating system no. 3B. The requirement that the coating system shall be pre-qualified is maintained.
- Modification of the criteria for use of shop primers.
- Modification of the requirements for pre-qualification of coating systems using shop primers as an integrated part of the final coating system.
- Modification of the requirements for pre-qualification of passive fire protection coatings.
- Modification of the requirements for pre-qualification of topcoats.
- The salt spray test in the coating system pre-qualification has been deleted.
- The condensation chamber test in the coating system pre-qualification is maintained for coating system no. 3B only.
- Modification of method for measuring scribe creep during pre-qualification testing of coating systems. Modification of acceptance criteria for scribe creep.
- The requirements for tank coating systems, coating system no. 3, have been made more specific.

Other smaller changes and modifications are also made. All changes are highlighted with revision marks.
1 SCOPE
This standard gives the requirements for the selection of coating materials, surface preparation, application procedures and inspection for protective coatings to be applied during the construction and installation of offshore installations and associated facilities.

This standard cover both paints, thermally sprayed metallic coatings and application of passive fire protective coatings.

The aim of this standard is to obtain a coating system, which ensures:

- Optimal protection of the installation with a minimum need for maintenance.
- That the coating system is maintenance friendly.
- That the coating system is application friendly.
- That health, safety and environmental impacts are evaluated and documented.

This standard is not applicable to pipelines and pipeline risers.

2 NORMATIVE REFERENCES
The following standards include provisions, which, through reference in this text, constitute provisions of this NORSOK standard. Latest issue of the references shall be used unless otherwise agreed. Other recognised standards may be used provided it can be shown that they meet or exceed the requirements of the standards referenced below.

ASTM D823 Method of producing films of uniform thickness of paint, varnish, lacquer and related products on test panels.
ASTM D1141 Specification for substitute ocean water.
ASTM D1650 Method of sampling and testing shellac varnish.
ASTM G8 Test method for cathodic disbonding of pipeline coatings.
ASTM G 53 Recommended practice for operating light- and water-exposure apparatus (fluorescent UV-condensation type) for exposure of non-metallic materials.
BS 5493 Code of practice for protection of iron and steel structures against corrosion.
DIN 8566 Zusätze für das termische Spritzen.
DIN 32521 Acceptance test and quality control for thermal spraying equipment.
ISO 1461 Metallic coatings - Hot-dip galvanised coating on fabricated ferrous products - Requirements.
ISO 1513 Paints and varnishes - Examination and preparation samples for testing.
ISO 1514 Paints and varnishes - Standard panels for testing.
ISO 2811 Paints and varnishes - Determination of density.
ISO 2812 Paints and varnishes - Determination of resistance to liquids.
ISO 2814 Paints and varnishes - Comparison of contrast ratio (hiding power) of paint of the same type and colour.
ISO 3251 Paints and varnishes - Determination of non-volatile matters of paints, varnishes and binders for paint and varnishes.
ISO 4624 Paints and varnishes - Pull-off test for adhesion.
ISO 4628 Paints and varnishes - Evaluation of degradation of paint coatings - Designation of intensity, quantity and size of common type of defects.
ISO 6270 Paints and varnishes - Determination of resistance to humidity (continuous condensation).
ISO 7253 Paints and varnishes - Determination of resistance to neutral salt spray.
ISO 8502-3 Preparation of steel substrates before application of paints and related products - Test for the assessment of surface cleanliness - Assessment of dust on steel surfaces prepared for painting, pressure sensitive tape method.
ISO 8502-6 Preparation of steel substrates before application of paints and related products - Test for the assessment of surface cleanliness - Sampling of soluble impurities on surfaces to be painted - The Bresle method.
ISO 8502-9 Preparation of steel substrates before application of paints and related products - Test for the assessment of surface cleanliness - Field Method for the Conductometric Determination of Water-Soluble Salts.
ISO 8503 Preparation of steel substrates before application of paints and related products - Surface roughness characteristics of blast cleaned substrates.
NACE RP0188 Discontinuity (holiday) testing of protective coatings.
NORSOK M-001 Material selection
NORSOK S-002 Working environment
NS 476 Rules for the approval of surface treatment inspectors.
RAL-1K Farbenübersicht.
SFS 8145 Anticorrosive painting, surface preparation methods of blast cleaned and shop primer coated steel substrates and preparation grades for respective treatments.
SSPC Vol.2 Steel structures painting manual. SP-1 and PA-2

3 DEFINITIONS AND ABBREVIATIONS

3.1 Definitions

Can Can-requirements are conditional and indicate possibility open to the user of the standard.
Feathered A gradual taper in thickness from a coated surface to an uncoated surface.
Generic type Coatings with the same type of binder and active filler (e.g. zinc). Used in this document for shop primers.
Holiday A discontinuity in a coating, which exhibits electrical conductivity, when exposed to a specific voltage.
Informative references Shall mean informative in the application of NORSOK standards.
May May indicate a course of action that is permissible within the limits of the standard (a permission).
Normative references Shall mean normative in the application of NORSOK standards.
Shall is an absolute requirement which shall be followed strictly in order to conform to the standard.

Shop primer A thin protective coating normally applied for protection during transport and storage.

Should is a recommendation. Alternative solutions having the same functionality and quality are acceptable.

Stripe Coat A supplementary coat applied to ensure adequate protection of critical areas like edges, welds etc.

3.2 Abbreviations

MDFT Minimum dry film thickness.
NDFT Nominal dry film thickness.
RAL Colour definitions issued by RAL, Deutsches Institut für Gütesicherung und Kennzeichnung e.V.
SSPC Steel Structures Painting Council.

4 GENERAL REQUIREMENTS

4.1 General

Selection of coating systems and application procedures shall be made with due consideration to conditions during fabrication, installation and service of the installation.

4.2 Planning

All activities shall be fully incorporated in the fabrication plan.

Details of management, inspectors, operators, facilities, equipment and qualified procedures shall be established and documented before commencing work.

Steel surfaces shall be blast cleaned and coated, i.e. metal sprayed or coated with primer and the succeeding coat of the applicable system, prior to installation.

4.3 Equipment protection and clean up

All equipment and structures shall be fully protected from mechanical damages, ingress of abrasives and dust from blast cleaning. Sags, droplets and paint over-spray (incl. dry-spray) shall be avoided. Adjacent areas not to be painted or already finished shall be protected. On completion of the work in any area, all masking materials, spent abrasives, equipment etc. shall be removed.

4.4 Ambient conditions

No final blast-cleaning or coating application shall be done if the relative humidity is more than 85% and when the steel temperature is less than 3°C above the dew point. Coating shall only be applied or cured at ambient and steel temperatures above 0 °C.

The coating manufacturer shall specify the maximum and minimum application and curing temperature and other relevant limitations regarding application and curing conditions for each product in any coating system.
4.5 Coating materials
The selected coating materials shall be suitable for the intended use and shall be selected after an evaluation of all relevant aspects such as:

- Corrosion protective properties.
- Requirements to health, safety and environment.
- Properties related to application conditions, equipment and personnel.
- Availability and economics of coating materials.

All coating materials and solvents shall be stored in the original container bearing the manufacturer's label and instructions. Each product shall have a batch number showing year and month of manufacture and giving full traceability of production. Shelf life shall be included in the technical data sheet.

Applicable coating systems are tabulated in Annex A. For those coating systems which are subject to pre-qualification, i.e. coating systems 1, 3B, 4, 5 and 7, the specified coating systems are examples, and alternative coating systems may be used if the requirements of this document are fulfilled. All systems shall be compatible with respect to over-coating and maintenance.

Topcoat colours should be in accordance with Annex B. Light colours shall be used in ballast and fresh water tanks.

4.6 Steel materials
Steel subject to surface preparation on site shall as a minimum requirement be in accordance with rust-grade B according to ISO 8501-1. Shop primers shall be regarded as temporary corrosion protection and shall be removed prior to the application of the coating systems herein unless the requirements in clause 4.7 are fulfilled.

4.7 Shop primer
If a shop primer is considered left on the surface to form an integrated part of the final coating system, it shall be applied in accordance with the following requirements:

- Blast cleaning shall comply with ISO 8501-1 Sa 2½ and the surface shall remain at Sa 2½ until application of the primer. The primer shall consist of 1 coat zinc ethyl silicate primer with 15µm thickness. Measured on a plane polished steel or glass test plate, the dry film thickness shall be maximum 25µm.

Use of shop primer as an integrated part of the final coating system, can only be considered for coating system no. 1, 3B, 4, 5, 7 and 8. For coating systems 1, 3B, 4, 5 and 7, the pre-qualification requirements in clause 10.1 “Pre-qualifications of products” shall apply.

Areas with intact shop primer shall be sweep blasted to minimum lightly in accordance with the SFS 8145, table 1 prior to application of the final coating system. All other areas shall be treated in accordance with the requirements for bare steel.
4.8 Unpainted surfaces
The following items shall not be coated unless otherwise specified:
- Aluminium, titanium, uninsulated stainless steel, chrome plated, nickel plated, copper, brass, lead, plastic or similar.
- Jacketing materials on insulated surfaces.

If stainless steel is connected to carbon steel, the stainless steel part shall be coated 50 mm beyond the weld zone onto the stainless steel. For piping and pressure vessels, the coating for the stainless steel part shall not contain metallic zinc.

4.9 Handling and shipping of coated items
Coated items shall be carefully handled to avoid damage to coated surfaces. No handling shall be performed before the coating system is cured to an acceptable level. Packing, handling and storage facilities shall be of non-metallic type.

4.10 Pre-qualification of products, personnel and procedures
Pre-qualification requirements as described in clause 10 of this document shall be fulfilled and documented prior to commencement of any work in accordance with this document.

4.11 Metal coating
Hot-dip galvanising shall be in accordance with ISO 1461. Hot-dip galvanised items, except bolts/nuts and gratings, shall normally be painted (ref. coating system 6).

Metal spraying shall be in accordance with the requirements in this document.

5 HEALTH, SAFETY AND ENVIRONMENT
The following documentation shall be provided and used when evaluating coating systems:
- Chemical name of organic solvent, OAR number (Occupational Air Requirements) according to Norwegian regulations and VOC content (Volatile Organic Components g/l).
- Percentage of low molecular epoxy (molecular weight < 700).
- Content of hazardous substances. Ref. NORSOK S-002.
- Specification of hazardous thermal degradation components.
- Combustibility.
- Special handling precautions and personal protection.

All coating products shall as a minimum be in accordance with relevant Norwegian regulatory requirements regardless of where the coating operation takes place.

Content of quartz and heavy metals in blast cleaning media (ISO 8504-2) shall be given.
6 SURFACE PREPARATION

6.1 Pre-blasting preparations
Sharp edges, fillets, corners and welds shall be rounded or smoothened by grinding (min R = 2 mm).

Hard surface layers, e.g. resulting from flame cutting, shall be removed by grinding prior to blast cleaning.

The surfaces shall be free from any foreign matter such as weld flux, residue, slivers, oil, grease, salt etc. prior to blast cleaning. All surfaces should be washed with clean fresh water prior to blast cleaning.

Any oil and grease contamination shall be removed prior to blasting operations, in accordance with SSPC-SP-1.

Any major surface defects, particularly surface laminations or scabs detrimental to the protective coating system shall be removed by suitable dressing. Where such defects have been revealed during blast cleaning, and dressing has been performed, the dressed area shall be reblasted to the specified standard. All welds shall be inspected and if necessary repaired prior to final blast cleaning of the area. Surface pores, cavities etc. shall be removed by suitable dressing or weld repair.

6.2 Blast cleaning
Blasting abrasives shall be dry, clean and free from contaminants, which will be detrimental to the performance of the coating.

Size of abrasive particles for blast cleaning shall be such that the prepared surface profile height (anchor pattern profile) is in accordance with the requirements for the applicable coating system. The surface profile shall be graded in accordance with ISO 8503.

The cleanliness of the blast cleaned surface shall be as referred to for each coating system in accordance with ISO 8501-1.

6.3 Final surface condition
The surface to be coated shall be clean, dry, free from oil/grease, and have the specified roughness and cleanliness until the first coat is applied.

Dust, blast abrasives etc. shall be removed from the surface after blast cleaning such that the particle quantity and particle size do not exceed rating 2 of ISO 8502-3.

The maximum content of soluble impurities on the blasted surface as sampled using ISO 8502-6 and distilled water, shall not exceed a conductivity measured in accordance with ISO 8502-9 corresponding to a NaCl content of 20 mg/m².
7 PAINT APPLICATION

7.1 General
Contrasting colours shall be used for each coat of paint.

Hiding power of topcoat for specified colours shall be tested in accordance with ISO 2814. Contrast ratio shall not be less than 94% at the specified topcoat thickness.

The coating manufacturer shall provide a Coating System Data Sheet (CSDS) for each coating system to be used, containing at least the following information for each product:

- Surface pre-treatment requirements.
- Film thickness (max, min. and specified).
- Maximum and minimum re-coating intervals at relevant temperatures.
- Information on thinners to be used (quantities and type).
- Coating repair system (qualified in accordance with table 10.1).

7.2 Application equipment
The method of application shall be governed by the coating manufacturer's recommendation for the particular coating being applied.

Roller application of the first primer coat is not acceptable. When paints are applied by brush, the brush shall be of a style and quality acceptable to the coating manufacturer. Brush application shall be done so that a smooth coat, as uniform in thickness as possible, is obtained.

7.3 Application
For each coat, a stripe coat shall be applied by brush to all welds, corners, behind angles, edges of beams etc. and areas not fully reachable by spray in order to obtain the specified coverage and thickness.

Edges of existing coating shall be feathered towards the substrate prior to overcoating.

Each coat shall be applied uniformly over the entire surface. Skips, runs, sags and drips shall be avoided. Each coat shall be free from pinholes, blisters and holidays.

Contamination of painted surfaces between coats shall be avoided. Any contamination shall be removed.
8 THERMALLY SPRAYED METALLIC COATINGS

8.1 General
Relevant requirements provided in this standard are applicable for thermally sprayed metallic coatings. Specific requirements valid for thermally sprayed metallic coatings are provided below.

8.2 Coating materials
The materials for metal spraying shall be in accordance with the following standards:

Aluminium: Type Al 99.5 of DIN 8566/2 or equivalent.
Aluminium alloy: Aluminium alloy with 5% Mg, DIN 8566/2 AlMg5 or equivalent.

All coating metals shall be supplied with product data sheets and quality control certificates, and be marked with coating metal manufacturer's name, manufacturing standard, metal composition, weight and manufacture date.

The materials for sealing the metal coating shall be in accordance with BS 5493 (1977), chapter 11, table 4C. Type CP4, CP5 or CP6 shall be used for operating temperatures below 120°C and type CP7 above 120°C operating temperature.

8.3 Application of thermally sprayed coating
Each coat shall be applied uniformly over the entire surface. The coat shall be applied in multiple layers and shall overlap on each pass of the gun.

Equipment for application should follow guidelines given in DIN 32521.

For items that will be welded after spraying, 5-10 cm measured from the bevel area shall be left uncoated.

The coating shall be firmly adherent. The surface after spraying shall be uniform and free of lumps, loosely adherent spattered metal, bubbles, ash formation, defects and uncoated spots.

Before application of any further coat, any damage to the previous coat shall be repaired.

8.4 Repair, field coating of pipes and coating of in-fill steel
All requirements, including adhesion, applicable to metal spraying, shall apply.

The treating and handling of the substrate shall be done in such a manner that the product in its final condition will have a continuous and uniform coating.

Before the metal spraying operation starts, the area 30-40 cm in distance from the weld zone shall be sweep-blasted to ensure that all contamination is removed. The uncoated welding zone shall be blast cleaned as specified for coating system no 2. The metal coating shall be performed according to the requirements above, ref. 8.3.
9 SPRAYED ON PASSIVE FIRE PROTECTION

9.1 General
Relevant requirements provided in this standard are applicable for sprayed on passive fire protection. Specific requirements valid for sprayed on passive fire protection are provided below.

Information regarding selection of materials, thicknesses and areas to be protected is not covered by this document, but the passive fire protective material shall follow applicable requirements to fire retardant properties.

9.2 Materials
The sprayed on fire protection shall be applied with wire mesh reinforcement. The wire mesh shall be mechanically fixed to the steel substrate by studs and be properly embedded into the passive fire protection material. The wire mesh shall be plastic coated for all types of fire protection, with the exception of epoxy based materials for which hot dip galvanised or stainless steel wire mesh shall be used. Alternative reinforcement and anchoring of the sprayed on fire protection may be used for piping, tubulars, rectangulars, and minor supports or similar.

Cement based fire protection shall be externally protected with a material which retards/stops the migration of carbon dioxide and humidity. The coating shall be accepted by the manufacturer.

Coating system no. 5 shall be used for sprayed on passive fire protection. Topcoats used on passive fire protection shall be pre-qualified for coating system 1. The sprayed on passive fire protection coating system without topcoat shall be pre-qualified in accordance with clause 10. During construction, other primers/substrates than the ones used in the pre-qualification test for the passive fire protection system may be used, provided the products are already pre-qualified in coating system 1. Under all conditions, surface preparation, primers/substrates and topcoats are subject to acceptance by the manufacturer of sprayed on passive fire protective coating.

The supplier of the sprayed on passive fire protection material shall document that the passive fire protection system as applied has good properties concerning relevant rapid temperature changes during construction and operation.

9.3 Application
Application of the sprayed on passive fire protective coating shall be in accordance with the recommendations given by the manufacturer of the material.

Studs shall be welded to the structural members, firewalls and fire rated decks with a maximum of 300 mm centres. Attention shall be paid to areas where mesh ends on the substrate. In these areas the maximum distance shall be 200 mm between welded studs. On highly stressed structural steel, stud welding may not be allowed. In these areas, the studs may be glued to the substrate.

If several layers of passive fire protective coating are necessary, the material shall normally be sprayed wet to wet.
After the passive fire protective coating material has cured, and before application of topcoat, the thickness of the coating shall be checked. Cores shall be drilled on a spot check basis to ensure that the thickness is correct. The holes shall be marked and filled with fresh material immediately after the readings.

Topcoating shall be carried out in accordance with manufacturer’s specification.

The surface finish shall conform to the reference sample prepared during the CPT (ref. section 10.3) and manufacturers application guide. On horizontal surfaces and cavities, adequate water drainage shall be ensured. Areas, which are difficult to access for spraying of passive fire protective coating, shall to the extent possible, be boxed in before the passive fire protective coating is applied. Adequate water shedding shall be arranged for.

9.4 Repairs
The damaged area shall be removed and the edge around the area shall be cut back to solid materials. Adequate overlap with existing reinforcement shall be ensured. If the area is greater than 0.025 m², the mesh shall be replaced and secured to the substrate. If the corrosion protection is damaged, the area shall be blast cleaned to Sa 2½ and new corrosion protection applied.

10 QUALIFICATION REQUIREMENTS

10.1 Pre-qualification of products
The requirements for pre-qualification prior to use is applicable to coating system no.1 (applied on carbon steel) and to coating systems no. 3B, 4 and 7. In addition, any sprayed on fire protective coating to be used for outdoor or naturally ventilated areas shall be subject to pre-qualification testing. Tests shall be carried out on 5 mm thick carbon steel panels of a type in accordance with ISO 1514. Reference shall also be made to ASTM D 823 and ISO 1513.

The tests shall be carried out on complete coating systems and in accordance with table 10.1. If a pre-qualified coating system no.1 is used under cement based sprayed on passive fire protection, only the immersion/freeze/dry test shall be performed on the complete system.

Each coating product to be qualified shall be identified by the following:
1. An infrared scan (fingerprint).
2. Specific gravity of base and curing agent (ref. ISO 2811).
3. Ash content (ASTM D1650), volatile and non-volatile matters (ISO 3251) of each component.

The identification shall be carried out on the batch, which is used for the pre-qualification testing. Pre-qualification of products shall be carried out at an independent laboratory.

In a pre-qualified coating system, the approved topcoat may substitute another pre-qualified topcoat, provided the intermediate coating is the same and the film-thickness of the topcoats are equal.
When a shop primer is an integrated part of coating system no. 1, 3B or 7, the following shall apply:

- One coating system, system no. 1 or 7, shall be tested with and without the shop-primer. Both systems must pass the test in table 10.1.
- The shop primer may then be used as an integrated part of a compatible coating system which has been pre-qualified in accordance with table 10.1 with or without shop primer.

To form an integrated part of system 4 and 5, the complete coating system with shop primer shall be pre-qualified according to table 10.1.
Table 10.1 Pre-qualification tests for coating materials.

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Method</th>
<th>Duration</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensation chamber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(System 3B only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt spray:</td>
<td>ISO 7253</td>
<td>25 cycles à 168h = 4200h</td>
<td>1. Corrosion creep from scribe: less than 3.0 mm (not applicable for the ISO 6270 test)</td>
</tr>
<tr>
<td>Drying in air:</td>
<td>ASTM G53</td>
<td>168h</td>
<td>2. Blistering (ISO 4628-2): Rating 0</td>
</tr>
<tr>
<td>UV-A 340nm weatherometer:</td>
<td></td>
<td></td>
<td>3. Chalking (ISO 4628-6): Max. rating 2</td>
</tr>
<tr>
<td>One cycle:</td>
<td></td>
<td></td>
<td>4. Rusting (ISO 4628-3): Rating 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Cracking (ISO 4628-4): Rating 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Adhesion (ISO 4624): Min 5.0MPa and max. 50% reduction from original value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7. Overcoatable without mechanical treatment obtaining minimum adhesion of 5MPa. (Applicable for the cyclic and immersion tests only).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For the sprayed on passive fire protection system, water absorption after complete immersion/freeze/dry test shall be reported</td>
</tr>
<tr>
<td>Immersion/freeze/dry test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Applicable to sprayed on passive fire protection only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water immersion:</td>
<td>ISO 2812-2</td>
<td>840h</td>
<td>7. Overcoatable without mechanical treatment obtaining minimum adhesion of 5MPa. (Applicable for the cyclic and immersion tests only).</td>
</tr>
<tr>
<td>Freezing, -15±2°C:</td>
<td></td>
<td>24h</td>
<td>For the sprayed on passive fire protection system, water absorption after complete immersion/freeze/dry test shall be reported</td>
</tr>
<tr>
<td>Drying in air 23±2°C/50±5%:</td>
<td></td>
<td>168h</td>
<td></td>
</tr>
<tr>
<td>relative humidity:</td>
<td></td>
<td>168h</td>
<td></td>
</tr>
<tr>
<td>One cycle:</td>
<td></td>
<td>840h</td>
<td></td>
</tr>
<tr>
<td>Cathodic disbonding</td>
<td>ASTM G8</td>
<td>30 days</td>
<td>Max. disbonding 10 mm</td>
</tr>
<tr>
<td>(System 3B and 7 only)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Adhesion: Adhesion testing shall be performed by using equipment with an automatic centred pulling force. For coating system 4, adhesion testing may be conducted on coating without non-skid aggregates on test panels not exposed to the above test environments. For sprayed on passive fire protection, adhesion shall be read as cohesion. Min 2.0 MPa for cement based products and min 3.0 MPa for epoxy based products. For both product types, max. 50 % reduction from original value is acceptable.
2. For all tests, 3 parallel test specimens shall be used. Minimum 2 parallels shall fulfil the requirements.
3. In the cyclic test, the electrolyte shall be synthetic seawater in accordance with ASTM D1141.
4. For the cyclic and immersion/freeze/dry tests, the scratch line shall be horizontal and have the following dimensions: minimum 50 mm long, minimum 2 mm wide and down to bare metal. Corrosion creep shall be calculated from the average of 9 measurements of the maximum width of the corrosion across the scribe. The maximum width is measured in the middle of the scribe, and in four points on each side of the middle, 5mm between each point. Corrosion creep \(M = \frac{(C-W)}{2} \), where \(C \) is the average of the 9 maximum widths of corrosion across the scribe, and \(W \) is the original width of scribe.
5. For coating system 7, corrosion creep, as measured in accordance with note 4, shall be less than 8 mm in the Cyclic test for areas below splash zone.
6. For coating system 3B, 4, 5 and 7, the criteria for chalking is not applicable.
7. All coating film thickness readings on the test plates shall be within ±20% of specified dry film thickness.
8. The thickness of the passive fire protection system to be tested shall be 6 mm. Tests shall be performed on material without reinforcement.
9. Use of UV-B light in the weatherometer test is acceptable as an option to UV-A.
10. Testing of system 5 shall be carried out without topcoat
11. For coating systems for the splash zone area, the requirements both for system 1 and 7 shall be fulfilled.
10.2 Qualification of personnel

10.2.1 Qualification of paint operators
Operators shall be qualified to tradesman level as blast-cleaner, painter, applicator etc. The personnel shall have relevant knowledge of health and safety hazard, use of protection equipment, coating materials, mixing and thinning of coatings, coating pot-life, surface requirements etc.

If not qualified to tradesman level, personnel shall carry out a test in accordance with the Coating procedure specification for coating system no 1. The test shall be supervised by a qualified supervisor and inspected and accepted by qualified QC personnel. A test certificate shall be issued.

The test shall be carried out on a test panel (minimum 1 x 1 m) containing at least 1 pipe-end, 2 pipes, 1 angle and 1 flat bar. Alternatively a location providing similar geometrical complexity on the component to be coated may be used.

The acceptance criteria are the requirements to the coating system described in this standard. Variation in the film thickness shall be within the limits described in the Coating system data sheet as supplied by the coating manufacturer. Operators failing to meet the requirements shall not be allowed to carry out work in accordance with this standard.

10.2.2 Qualification of metal spray operators
Prior to commencement of work in accordance with this document, the operator shall pass the pre-qualification test described in table 10.2. The results from the qualification test specified below are valid for maximum 12 months without regular coating work.

Table 10.2 Qualification of metal spraying.

<table>
<thead>
<tr>
<th>Test</th>
<th>Acceptance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual examination of coating</td>
<td>All test panels shall be examined without magnification and with 10X magnification.</td>
</tr>
<tr>
<td>Film thickness and shape test (Note 2)</td>
<td>Minimum 200µm on all specimen surfaces</td>
</tr>
<tr>
<td>Adhesion (Note 3)</td>
<td>ISO 4624. All test panels shall be tested. Examination of the test specimens shall be conducted after rupture to determine the cause of failure.</td>
</tr>
</tbody>
</table>

Notes
1. General: Test materials shall be of a comparable grade to be used in production. The coating shall be applied in accordance with this document and the proposed procedure.
2. Specimens for shape test: One specimen shall be cut from a 1500 mm long "T", "I" or "H" shaped profile with approximate dimensions 750 by 750 by 13 mm. Another specimen shall be cut from a 1500 mm long 50 mm diameter pipe.
3. Specimens for adhesion test: Five specimens for the adhesion test shall be prepared according to the requirements of ISO 4624 using minimum 5 mm thick plates.
10.2.3 Qualification of passive fire protection operators
Operators, including pump machine operator, shall be qualified, trained and certified according to the manufacturer’s procedures.

Before any stud welding, the welders and the procedures to be used shall be qualified in accordance with the coating manufacturer’s procedures.

If the operators or stud welders have not been working with the type of application or material within a period of 12 months, the applicator shall document that necessary supplementary training have been given before start of any work.

10.2.4 Qualification of supervisors, foremen and QC personnel
Personnel carrying out inspection or verification shall be qualified in accordance with NS 476 (inspector level), Certified NACE Coating Inspector or equivalent.

Assistant Inspectors according to NS 476 may carry out the inspection work under the supervision of an inspector.

Supervisors and foremen shall be qualified to tradesman level and should be qualified as inspector in accordance with NS 476, NACE or equivalent.

Supervisors, foremen or QC personnel involved in application of passive fire protection shall in addition, be trained and certified according to the procedures of the manufacturer of the passive fire protective material.

10.3 Qualification of procedures
Coating Procedure Specification (CPS)

A detailed CPS based on the requirements of this standard shall be established. The CPS shall contain the following:

- Identification of equipment for surface preparation and application.
- Information given on Coating System Data Sheet.
- Personal protective equipment to be used.
- Safety data sheets for each product.
- Product data sheets.

For the sprayed on passive fire protection, the CPS shall, in addition, contain information regarding maximum allowable time between application of the different layers, method and frequency of measuring thicknesses, location of the reinforcement related to the different thicknesses and restrictions for use of solvents.

The qualified CPS shall be followed during all coating work.

The following changes in the coating application parameters requires the CPS to be re-qualified:

- Any change of coating material.
- Change of method and equipment for surface preparation and coating application.
Coating Procedure Test (CPT)

A CPT shall be used to qualify all coating procedures. A test panel (ref. 10.2.1 or 10.2.2 as applicable), alternatively a suitable location on the component to be coated, may be selected on which the CPT shall be carried out.

The coating procedures shall be qualified under realistic conditions likely to be present during coating application.

If the shop primer is intended to form an integrated part of the final coating system, and the requirements of clause 4.7 and 10.1 are fulfilled, the CPT shall be conducted on shop primed steel sweep blasted to grade lightly or more in accordance with SFS8145 and on steel blast cleaned to the agreed standard for steel without shop primer.

Inspection and testing requirements for the CPT, including acceptance criteria, shall be as given in clause 11. For metal spray, additional acceptance criteria provided in table 10.2 shall also apply.

Curing time prior to carry out the adhesion test shall be according to time for fully cured in coating supplier’s data sheet.

For sprayed on passive fire protection, the CPT shall be performed on an area accepted by the parties involved. The area shall be clearly marked, and will serve as a reference area throughout the project. The application of the fire protection shall comply with the applicable procedures, and be subject to approval by the parties involved. The surface finish on the CPT area, and quality of the work, shall be used as a reference with respect to the quality of the work to be done during further production work.

11 INSPECTION AND TESTING

Testing and inspection shall be carried out in accordance with table 11.1. Surfaces shall be accessible until final inspection is carried out.
Table 11.1 Inspection and testing.

<table>
<thead>
<tr>
<th>Test type</th>
<th>Method</th>
<th>Frequency</th>
<th>Acceptance criteria</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental conditions</td>
<td>Ambient and steel temperature. Relative humidity. Dew point</td>
<td>Before start of each shift + minimum twice per shift.</td>
<td>In accordance with specified requirements</td>
<td>No blasting or coating</td>
</tr>
<tr>
<td>Visual examination</td>
<td>Visual for sharp edges weld spatter slivers, rustgrade, etc.</td>
<td>100% of all surfaces</td>
<td>No defects, ref. specified requirements</td>
<td>Defects to be repaired</td>
</tr>
</tbody>
</table>
| Cleanliness | a) ISO 8501-1
 b) ISO 8502-3 | a) 100% visual of all surfaces
 b) Spot checks | a) In accordance with specified requirements
 b) Max. quantity and size rating 2 | a) Reblasting,
b) Recleaning and retesting until acceptable |
| Salt test | ISO 8502-6 and ISO 8502-9 | Spot checks | Max conductivity corresponding to 20mg/m² NaCl. | Recleaning and retesting until acceptable |
| Roughness | Comparator or Stylus Instrument (ISO 8503) | Each component or once per 10m² | As specified. | Reblasting |
| Visual Examination of coating | Visual to determine: curing, contamination, solvent retention, pinholes/popping, sagging, surface defects | 100% of surface after each coat. | According to specified requirements | Repair of defects |
| Holiday detection | NACE RP0188 Voltage, ref. table 1 | As per system specification | No holidays | Repair and retesting. |
| Film thickness | SSPC-PA 2 calibration on smooth surface | SSPC-PA 2 and Coating system data sheet. | Repair, additional coats or recoating as appropriate. |
| Adhesion | ISO 4624 using equipment with an automatic centred pulling force, and carried out when system are fully cured | Spot checks | Ref. notes below. | Coating to be rejected |

NOTES:

1. For system no 2, adhesion during qualification shall be minimum 9.0MPa. Adhesion measured during production shall be minimum 7.0MPa for any single measurement.
2. For system 3A, 3C, 3D, 3E, 3F and 3G, max. 30% reduction from the CPT is acceptable. Absolute minimum value is 5 MPa.
3. For sprayed on passive fire protection, max. 50 % reduction from CPT value read as cohesion is acceptable. Absolute minimum values are 2.0 MPa for cement based products and 5.0 MPa for epoxy based products.
4. For the remaining coating systems, 50% reduction of average adhesion value from the CPT is acceptable as minimum adhesion during production coating. Absolute minimum value is 5 MPa.
ANNEX A - COATING SYSTEMS

COATING SYSTEM NO. 1 (Shall be pre-qualified)

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system (example)</th>
<th>NDFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel with operating temperature < 120 °C</td>
<td>Cleanliness: ISO 8501 Sa 2½ Roughness: ISO 8503 Grade Fine to Medium G (30-85 µm, R₃₅)</td>
<td>1 coat zinc rich epoxy: 1 coat two component epoxy: 1 coat top coat:</td>
<td>60 200 75 335</td>
</tr>
<tr>
<td>- Structural steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Exteriors of equipment, vessels, piping & valves (not insulated)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. If the epoxy is not applied immediately after the primer has cured, or if the primer is exposed to humid or outdoor conditions prior to application of the epoxy, a tie-coat shall be applied on top of the zinc rich epoxy primer immediately after the primer has cured.
2. A non-skid aggregate shall be added to the intermediate coat when this coating system is used for deck areas.
3. In ventilated and heated rooms, the topcoat may be omitted.
4. The 200 µm epoxy may be applied as 2x100 µm.
5. Chalking rating 1 (table 10.1) or better should be preferred for externally exposed surfaces.
6. For the splash zone area, the system shall also fulfil the pre-qualification requirements for system 7.

COATING SYSTEM NO. 2

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system</th>
<th>Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel: Operating temperature > 120°C</td>
<td>Cleanliness: ISO 8501 Sa 2½ Roughness: ISO 8503 Grade Medium G (50 - 85 µm, R₃₅)</td>
<td>Thermally sprayed aluminium or alloys of aluminium. Sealer</td>
<td>Minimum 200 µm Ref. notes below</td>
</tr>
<tr>
<td>- All insulated surfaces of tanks, vessels, piping.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flare booms.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underside of bottom deck, included piping, jacket above splash zone, crane booms, lifeboat stations are optional areas (to be decided in each project).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. All metallised surfaces shall be sealed by an adequate sealer in accordance with British Standard BS 5493 (1977), chapter 11, table 4C. CP4, CP 5 or CP6 below 120°C and CP7 above 120°C operating temperature.
2. For items that will be welded after coating, 30-40 cm measured from the bevel area shall be left without sealer coat.
3. For insulated surfaces of tanks, vessels, piping and equipment operating at temperatures <120°C, 2 coats of immersion grade epoxy phenolic; each 150 µm NDFT may be applied as an alternative. MDFT shall be 300 µm. Surface preparation shall be as defined above.
COATING SYSTEM NO. 3 (system 3B shall be pre-qualified)

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system (example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal surface of carbon steel vessels</td>
<td>System 3A:</td>
<td>Lining materials for carbon steel vessels are subject to special evaluation, and shall always be approved by the purchaser.</td>
</tr>
<tr>
<td>3A Potable water tanks</td>
<td>Cleanliness: ISO 8501 Sa 2½Roughness: ISO 8503 Grade Medium G (50 - 85 µm, Rₚ)</td>
<td>As a minimum the following shall be evaluated:</td>
</tr>
<tr>
<td>3B Ballast water tanks/internal seawater filled compartments</td>
<td>System 3B: According to pre-qualification</td>
<td>• Medium</td>
</tr>
<tr>
<td>3C Tanks for stabilised crude, diesel and condensate</td>
<td>Other systems: As for system 3A or according to coating manufacturers recommendation.</td>
<td>• Operating temperature</td>
</tr>
<tr>
<td>3D Process vessels < 3 Barg, < 75°C</td>
<td></td>
<td>• Operating pressure</td>
</tr>
<tr>
<td>3E Process vessels < 70 Barg, < 80°C</td>
<td></td>
<td>• Experience with product</td>
</tr>
<tr>
<td>3F Process vessels <30 Barg, < 130°C</td>
<td></td>
<td>• Properties w.r.t explosive decompression</td>
</tr>
<tr>
<td>3G Vessels for storage of Methanol, MEG etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES
1. 100% holiday inspection in accordance with NACE RP0188 (table 1) is required for all tanks, except for system 3B and 3C where the tank tops and upper 1 m of walls shall be inspected. System 3G shall not be holiday tested.
2. Adhesion test shall be carried out on separate test plates, minimum adhesion values in accordance with ISO 4624 shall be 5.0MPa when using automatically centred test equipment.
3. When solvent based coating is used, the maximum coating thickness given on the paint manufacturer’s technical data sheet shall not be exceeded.
4. External of lined vessel shall be marked clearly in black letters: LINED VESSEL, NO HOT WORK

SPECIFIC NOTES:
System 3A:
1. All products used internally in potable water tanks and fresh water tanks shall be approved for such use by the Norwegian health authorities.
2. Internal lining to be applied in minimum three (3) coats each 100 µm when solvent based epoxy is used.
3. Internal lining to be applied in minimum two (2) coats each 300 µm when solvent free epoxy is used.

System 3B:
- Internal lining to be applied in minimum two (2) coats

System 3C:
- System to be applied to the flat bottoms and lower 1m of walls, and to the roofs and upper 1 m of walls

System 3D:
1. 2-component solvent free or solvent based epoxy is recommended
2. The coating should be cured as close to operating temperature as possible

System 3E:
- 2-component solvent based or solvent free epoxy or modified novolac epoxy is recommended.

System 3F:
- 2-component solvent free novolac epoxy is recommended.

System 3G:
- Zinc ethyl silicate to be used NFDT 50 - 90 µm, or in accordance with manufacturers technical data sheet
COATING SYSTEM NO. 4 (shall be pre-qualified)

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system (example)</th>
<th>NDFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walkways, escape routes and lay down areas.</td>
<td>Cleanliness: ISO 8501 Sa 2½ Roughness: ISO 8503 Grade Medium G (50 - 85 µm, Rg)</td>
<td>Non skid epoxy screed.</td>
<td>3000</td>
</tr>
<tr>
<td>Coating system 1 may be used on other deck areas.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. Light colour non-skid aggregates shall be used.
2. Particle size of non-skid aggregate to be 1 - 5 mm.
3. Aggregates shall have a uniform spread
4. Coating systems for escape route and lay down areas shall have adequate properties related to water absorption, impact resistance, coefficient of friction, hardness and flexibility.

COATING SYSTEM NO. 5A (Shall be qualified)

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system (example)</th>
<th>NDFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under epoxy based fire protection.</td>
<td>Cleanliness: ISO 8501 Sa 2½ Roughness: ISO 8503 Grade Fine to Medium G (30 - 85 µm, Rg)</td>
<td>I) 1 coat epoxy primer: or II) 1 coat zinc rich epoxy: 1 x epoxy tie coat: MDFT (µm):</td>
<td>50 60 25 85</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. Stud welding shall be done before final blast cleaning.
2. If the passive fire protection material is not applied immediately after the primer has cured, or if the primer is exposed to humid or outdoor conditions prior to application of the passive fire protection material, coating alternative II) shall be used.
3. Coating system no 2 may be used as substrate for epoxy based passive fire protection, provided this is approved by the manufacturer of the passive fire protection coating.
4. The coating system and products shall be approved by the manufacturer of the passive fire protection coating.
5. Top-coating on top of the passive fire protection shall be in accordance with the passive fire protection manufacturer’s recommendation.
COATING SYSTEM NO. 5B (Shall be qualified)

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system (example)</th>
<th>NDFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under cement based fire protection.</td>
<td>Cleanliness: ISO 8501 Sa 2½, Roughness: ISO 8503 Grade Fine to Medium G (30 - 85 µm, R₆₅)</td>
<td>1 coat zinc rich epoxy: 1 coat two component epoxy: MDFT (µm):</td>
<td>60 200 260</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. Stud welding shall be done before final blast cleaning.
2. If the epoxy is not applied immediately after the primer has cured, or if the primer is exposed to humid or outdoor conditions prior to application of the epoxy, a tie-coat shall be applied on top of the zinc rich epoxy primer immediately after the primer has cured.
3. The 200 µm epoxy may be applied as 2x100 µm.
4. The coating system and products shall be approved by the manufacturer of the passive fire protection coating.
5. Top-coating on top of the passive fire protection shall be in accordance with the passive fire protection manufacturer's recommendation.

COATING SYSTEM NO. 6

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system</th>
<th>NDFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninsulated stainless steel when painting is required. Aluminium when painting is required.</td>
<td>Sweep blasting with non-metallic and chloride free abrasive to obtain anchor profile of approximately 25-45 µm</td>
<td>1 coat epoxy primer: 1 coat two component epoxy: 1 coat top coat: MDFT (µm):</td>
<td>50 100 75 225</td>
</tr>
<tr>
<td>Galvanised steel.</td>
<td>Cleaning with alkaline detergent followed by hosing with fresh water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulated stainless steel piping and vessels at temperatures < 120°C</td>
<td>Sweep blasting with non-metallic and chloride free abrasive to obtain anchor profile of approximately 25-45 µm</td>
<td>2 coats immersion grade epoxy phenolic: MDFT (µm):</td>
<td>2 x 125 250</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. Coatings not to contain zinc.
2. 6Mo and 25Cr duplex stainless steel valves may be left uncoated. When such valves are welded into the piping system, the coating shall cover the weld zone and an additional 40 mm of the valve.
3. When coating stainless steel with operating temperatures above 120°C, 30 µm (NDFT) of a high temperature modified silicone paint suitable for the operating temperatures shall be used.
4. Aluminium handrails located in living quarter shall be anodised.
COATING SYSTEM NO. 7 (Shall be qualified)

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system (example)</th>
<th>NDFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submerged carbon steel and carbon steel in the splash zone.</td>
<td>Cleanliness: ISO 8501 Sa 2½
Roughness: ISO 8503 Grade Medium G (50 - 85 µm, R₅₅)</td>
<td>1 coat two component epoxy: 1 coat two component epoxy :
MDFT (µm):</td>
<td>225
225
450</td>
</tr>
<tr>
<td>Submerged stainless steel and stainless steel in the splash zone.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. The system shall always be used in combination with cathodic protection.
2. The system is aimed at ambient operating temperatures and maximum 50 °C.
3. For the splash zone, corrosion allowance in accordance with applicable regulatory requirements shall always be used in addition to the coating system (ref. M-001)
4. Anti-fouling may be required.
5. Piping embedded in concrete shall be corrosion coated at least 300 mm into concrete.
6. Application using an additional number of coats with lower film thicknesses is acceptable provided each coat is applied and cured in accordance with the coating manufacturers recommendation and provided all other requirements in this document are fulfilled.
7. For the splash zone area, the system shall also fulfill the pre-qualification requirements for system 1.

COATING SYSTEM NO. 8

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system (examples)</th>
<th>NDFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural carbon steel with operating temperature < 80 °C in internal and fully dry and ventilated areas.</td>
<td>Cleanliness: ISO 8501 Sa 2½</td>
<td>1. 1 coat two component epoxy
2. Zinc rich epoxy +epoxy tie coat</td>
<td>150
60 + 25</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. This coating system shall only be used if the areas are only exposed to fully dry indoor conditions during fabrication, intermediate storage, installation and operation. The system shall not be used on surfaces where water condensation may occur.
2. Reduced requirements (max 50 mg/m²) to salt on surface prior to coating is acceptable
3. Surface preparation to minimum St 2 may be used for touch-up.
4. Topcoat may be applied if specific colours are specified.
5. Equipment to be installed in non-corrosive areas as defined in the first note above, for example electrical rooms, control rooms, living quarters, etc., may normally be coated with suppliers standard coating system and colour. All such coating systems shall be subject to written acceptance from the Purchaser.
COATING SYSTEM NO. 9

<table>
<thead>
<tr>
<th>Application (if not specified under others)</th>
<th>Surface preparation</th>
<th>Coating system</th>
<th>NDFT (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk supplied carbon steel valves with operating temperature up to 200°C.</td>
<td>Cleanliness: ISO 8501 Sa 2½ Roughness: ISO 8503 Grade Medium G (50 - 85 μm, Rₖₜ)</td>
<td>2 coats immersion grade epoxy phenolic: MDFT (μm): 2 x 150 300</td>
<td>2 x 150 300</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. When it is possible to identify the operating conditions (temperature, insulation, exposure conditions, etc.) at the time the order is placed, the bulk ordered valves shall be supplied coated with one of the relevant coating systems in Annex A.
2. Tagged items shall always be supplied coated with one of the relevant coating systems in Annex A.
ANNEX B - COLOURS (INFORMATIVE)

The below topcoat colours should be selected:

<table>
<thead>
<tr>
<th>Colour</th>
<th>RAL - 1K designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>RAL 9002 (Grauweiss)</td>
</tr>
<tr>
<td>Blue</td>
<td>RAL 5015 (Himmelblau)</td>
</tr>
<tr>
<td>Grey</td>
<td>RAL 7038 (Achalgrau)</td>
</tr>
<tr>
<td>Green</td>
<td>RAL 6002 (Laubgrün)</td>
</tr>
<tr>
<td>Red</td>
<td>RAL 3000 (Feuerrot)</td>
</tr>
<tr>
<td>Yellow</td>
<td>RAL 1004 (Goldgelb)</td>
</tr>
<tr>
<td>Orange</td>
<td>RAL 2004 (Reinorange)</td>
</tr>
<tr>
<td>Black</td>
<td>RAL 9017 (Verkehrsschwarz)</td>
</tr>
</tbody>
</table>